\(\int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [204]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 115 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

2/5*a*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2)+8/15*a*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c
))^(1/2)+16/15*a*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2851, 2850} \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {8 a \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {16 a \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Sqrt[a + a*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]

[Out]

(2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (8*a*Sin[c + d*x])/(15*d*Cos[c + d*x]^(
3/2)*Sqrt[a + a*Cos[c + d*x]]) + (16*a*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 2850

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {4}{5} \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8}{15} \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.53 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \sqrt {a (1+\cos (c+d x))} (7+4 \cos (c+d x)+4 \cos (2 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{15 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]

[Out]

(2*Sqrt[a*(1 + Cos[c + d*x])]*(7 + 4*Cos[c + d*x] + 4*Cos[2*(c + d*x)])*Tan[(c + d*x)/2])/(15*d*Cos[c + d*x]^(
5/2))

Maple [A] (verified)

Time = 5.25 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.54

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (8 \left (\cos ^{2}\left (d x +c \right )\right )+4 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{15 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(62\)

[In]

int((a+cos(d*x+c)*a)^(1/2)/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d*sin(d*x+c)*(8*cos(d*x+c)^2+4*cos(d*x+c)+3)*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^(5/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.62 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (8 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 3\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

2/15*sqrt(a*cos(d*x + c) + a)*(8*cos(d*x + c)^2 + 4*cos(d*x + c) + 3)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d
*x + c)^4 + d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(1/2)/cos(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 237 vs. \(2 (97) = 194\).

Time = 0.34 (sec) , antiderivative size = 237, normalized size of antiderivative = 2.06 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (\frac {15 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {25 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {17 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {7 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{15 \, d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (\frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

2/15*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1
)^3 + 17*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c)
+ 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/(d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x +
 c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)
^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1))

Giac [A] (verification not implemented)

none

Time = 0.45 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {4 \, \sqrt {2} {\left ({\left ({\left (5 \, {\left (3 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} - 20\right )} \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 282\right )} \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} - 100\right )} \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 15\right )} \sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )}{15 \, {\left (\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1\right )}^{\frac {5}{2}} d} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

4/15*sqrt(2)*(((5*(3*tan(1/4*d*x + 1/4*c)^2 - 20)*tan(1/4*d*x + 1/4*c)^2 + 282)*tan(1/4*d*x + 1/4*c)^2 - 100)*
tan(1/4*d*x + 1/4*c)^2 + 15)*sqrt(a)*sgn(cos(1/2*d*x + 1/2*c))*tan(1/4*d*x + 1/4*c)/((tan(1/4*d*x + 1/4*c)^4 -
 6*tan(1/4*d*x + 1/4*c)^2 + 1)^(5/2)*d)

Mupad [B] (verification not implemented)

Time = 16.18 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.15 \[ \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {8\,\sqrt {a\,\left (\cos \left (c+d\,x\right )+1\right )}\,\left (7\,\sin \left (c+d\,x\right )+4\,\sin \left (2\,c+2\,d\,x\right )+9\,\sin \left (3\,c+3\,d\,x\right )+2\,\sin \left (4\,c+4\,d\,x\right )+2\,\sin \left (5\,c+5\,d\,x\right )\right )}{15\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\left (10\,\cos \left (c+d\,x\right )+8\,\cos \left (2\,c+2\,d\,x\right )+5\,\cos \left (3\,c+3\,d\,x\right )+2\,\cos \left (4\,c+4\,d\,x\right )+\cos \left (5\,c+5\,d\,x\right )+6\right )} \]

[In]

int((a + a*cos(c + d*x))^(1/2)/cos(c + d*x)^(7/2),x)

[Out]

(8*(a*(cos(c + d*x) + 1))^(1/2)*(7*sin(c + d*x) + 4*sin(2*c + 2*d*x) + 9*sin(3*c + 3*d*x) + 2*sin(4*c + 4*d*x)
 + 2*sin(5*c + 5*d*x)))/(15*d*cos(c + d*x)^(1/2)*(10*cos(c + d*x) + 8*cos(2*c + 2*d*x) + 5*cos(3*c + 3*d*x) +
2*cos(4*c + 4*d*x) + cos(5*c + 5*d*x) + 6))